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SUMMARY

The paper addresses the finite element method with a-posteriori error
estimation for elements of degree p =1 and p = 2. It gives the formu-
lae for the error indicators and error estimators. Basic mathematical
characterization of the estimators are given and it is shown that the
estimators for p =1 and p = 2 have different structures. Numerical

examples show the effectivity of the approach and the high quality of the

estimator.




1. INTRODUCTION
During the last few years a significant progress has been achieved
in the theory and the implementation of the adaptive procedures and
a-posteriori error estimation for the finite element method. For the
survey of the today's state of the art of the quality assessment of finite
element solutions we refer to [1]. Adaptive finite element codes FEARS

3 [2], PLTGM [3], EXPDES [4] were developed. For the theoretical and

implementational aspects related to the mentioned codes we refer to [5] to
[(10]. Various approaches for obtaining a-posteriori error estimates were
recently developed. See, for example, [1] - [15] and other references
mentioned in [1].

The codes and the theory mentioned above are for the finite element
method with elements of degree one. In this paper we are addressing the
questions arising from the use of elements of degree two. We will concen-

trate on the comparison between the approaches based on the elements of

degree one and two.
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2. THE MODEL PROBLEM
Let us consider the model problem of the Laplace equation
(2.1.) Lu) = -Au = f on Qc R°

with the boundary conditions

0
(2.2a) u = 0 on 93 Q

u

1
(2.2v) m - t on 3%

where n s the outward normal to 23Q.
The solution ug of the problem (2.1) (2.2) is understood in the
standard weak sense: ugy € HB(Q) = {u|u € H’(Q). u=0 on 309} such

that

(2.3) Blug,v) = [ (Wuy-Widx = [ fvax + [ tvds

2 a'a
holds for all v € H)(@). By H'(R) we denote the standard Sobolev
space. By |u|§ = B(u,u) we denote the energy norm of function

u € HY(Q).

Remark. Although we restricted ourself to a very special case (2.1),
(2.2) the theory and conclusions hold for the general elliptic equation on
bounded domains in RZ.

We will consider two illustrative model problems.

Problem 1. The domain § and the boundary conditions are shown in

Fig. 2.1.
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Fig. 2.1. Scheme of Problem 1.

P

302 consists of OA and on 3'@ t is defined so that the exact

solution ug is

YW e g -~

1
ug = 0.0700754r% sin 8/2
and

Jugly = 0.657878 x 107},

v o -

By (r,8) we denote the polar coordinates.

Problem 2. The (slit) domain Q@ and the boundary conditions are X

shown in Fig. 2.2. ;

392 consists of upper side OA (marked) and on 310. t 1is defined

so that the exact solution uj, is 3
1,
ug = 0.0635659r% sin 6/4
-1
fuglg = 0.579428 = 10

Problem 1 and 2 have obviously solution with different strength of

singularity.
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Fig. 2.2. Schem%i,?o;fﬁProblem 2.
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3. THE FINITE ELEMENT METHOD

We will consider the finite element method with the bilinear and
biquadratic elements on the meshes which are used in the Program FEARS.
These meshes have regular and irregular nodel points. The values of the
finite element solution in the irregular nodal points is determined by the
requirement that the elements are conforming. Fig. 3.la,b show the meshes
with 20 elements for the model problem 1 and bilinear and biquadratic ele-
ments. The regular nodel points are marked by -+, while the irregular
points are marked by x. We will not introduce here a formal definition ‘
and refer to (2], (61, [7].

: We have shown the meshes only for the special case. They are in ~
general defined for domains with curved boundaries. See [2], [6]. .
The finite element solution upp 1is defined in the standard way.

By e we denote the error of the finite element solution Upg» © = :

UFE - u.

i
d
\d
-

Fig. 3.1a. The regular and irregular nodal points for p = 1.
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Fig. 3.1b. The regular and irregular nodal points for p = 2.




4. THE ADAPTIVE FINITE ELEMENT METHOD A-POSTERIORI ERROR

ESTIMATION AND THE QUALITY ASSESSMENT

We will distinguish between the feedback and adaptive finite element

method. A feedback method utilizes the currently available information
for steering thc computational process. The adaptive approach is a feed-
back approach which has clearly defined optimal properties. Hence the
assessment of the quality of a feedback approach is relative to the
criterion of the optimality. We will not go here into details but refer
to [16]1, [17].

We will say that the feedback is adaptive with respect to the
convergence rate measure if the rate is the same as the theoretically
best one among all the meshes with the same number of degrees of freedom
N and the same degrees of elements p.

For our model problems the feedback approach will be adaptive if the

=1
(asymptotic) rage is O(N %) for the elements of degree p =1 and is

O(N’T) for the elements of degree p =2 1in both cases, i.e. the rate is
independent of the strength of the singularity. We note that the same
rate is obtained when the soclution is smooth.

The quality of the a-posteriori error estimator e 1is measured by
its eflectivity index © = e/|e|E where |e|E is the energy norm of the
error of the finite element solution. 1In practice we have to require
that |e-1| < .2 (say) when the accuracy of upg is in the range of the
engineering requirement (< 10% say). 1In addition we prefer that 0 > 1
so that the true error is overestimated rather than underestimated. This
is important because the error estimator is used as the stopping
criterion. Obviously if 6 >2 or 6 <% , then the error estimator is

practically unacceptable.
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5. THE ERROR INDICATORS AND ESTIMATORS

The error estimator e is computed through the error indicators

n(A) of the single element A. Then the error estimator (which

approximate |e|E) is given by
(5.1) e2 - I nm?
A

where the sum is taken over all elements.

The error indicators are also used for the steering the feedback
finite element method. We refer to [18] for the detailed analyses of
various steering strategies. The basic strategy is to refine all elements

having the error indicators over the threshold <, for example, T =

P P

Y max n{(A) where 0 < Y < 1 is a-priori chosen and the maximum is taken

over all elements.

The code FEARS uses basically this type of strategy but more ;
;

sophisticated to minimize computer time by avoiding repeated
recomputation. The experience with FEARS shows that the total computer
time is 2-3 times the computer time solving the final mesh only.

We note that error indicators which lead to completely unacceptable
quality of the error estimators can still perform relatively well in
steering the feedback approach.

Let us now define the error indicators for the bilinear and
biquadratic elements. For simplicity of the exposition, we will consider
only an uniform patch of the mesh. The data management of the adaptive

solver is based on the tree structure (see [7]) and mesh is defined in a

recursive way. Hence, every element has a "father" which has four

¢ S B eer - . @ M ¢ SRR g eemr- NN rey. 9. SEEEESs Y. ® = . & . o

s B

e o @ CEEES- > L

T U S T TR R ST SRS STl N T T JRP Tt U Ut S N St BV S T A A A S




"sons." Fig. 5.1 shows uniform mesh with element Ao, i =1,2,3,4

PR

belonging to one "father" (4% shown also in the figure.

Fig. 5.1. The element and his "father".

A. . Error indicator for the bilinear elements.

We will define the error indicator as used in FEARS but simplified

for the special problem under consideration.

Let
2,0 2 2 2 '
(5.2a) ni(a) = |a]° 1 ( max re (A)) 1
J=1 i=1,...,8 %
2,,0 2 1312
(5.2p) n,(a0) = |a]" [R]

0
L,(42)

where ]AI is the length of the element side, rxi(AJ) is the jump of ,

the derivative in the Xq direction in the vertex AJ of the element

0 J

A-l and
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(5.3a) R = f + AuFE -p

where p is such that I ﬁ dx = 0.

A0
Now we define i

(5.4a) n2(8) = n2(ad) + n3(ad).

It can be proven (see [6]) that nZ(A?) << n1(A?) and hence it can be

neglected and define

(5.4b) 7289 = n2(ad).

Experience with FEARS shows that in fact the use of n and 1

practically does not change the estimator in [6].

Remark 1. If the mesh is uniform and the solution is quadratic, then

the error estimator is exact.

Remark 2. We could use other equivalent estimators, for example,
replace n$ by the integral of the square of the jump of the derivative
of the finite element solution over the boundary of A? (multiplied by
|A|). Obviously n?(A?) {s the value of this integral computed by a
quadrative. Nevertheless, experience shows that for small accuracy (large
error) the estimator based on the integral tends to underestimate the
error and hence the definition of the indicator n; corrects this

undesirable and enlarges the range of the asymptotic validity of the

situation of the estimator (see also numerical results in section 7).
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B. Error indicator for biquadratic elements

] Let us assume that the center of the element lies in the origin.

' Define
' 2
¥ 2 - A =
6 = Xy lEL_’ t=12
;
9
- Y = !
(5.5a) G(vy) fo (r A VuFE Vvl)dx. i ,2
Ve A
. 1
(5.5b) b, = -;—228-G(v1). {=1,2
Al
2,50 120 ¢ 2
(5.6) nf(a)) = —=5 1 (Glvg)e.
ja] T 1=
(The integrals in (5.5a) are numerically computed.)
2( A0 2 2
5 (5.7) 28] = [a] I [ )%s
- j= J
A where the integral is taken over the sides of the elements perpendicular
to xJ and rxj are as before the jump in the derivatives.
(5.8) O VI PYE [T
L,(A])
- 2° 1
where

..
-

\f_..,‘.'_..r._.-‘,- . s . - .\...r_. \. o

R = f + AU

U = Upg * D1X16y * boXp6;
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i and b1 are given by (5.5b). Then we define

"\

: 2,,0 3 2¢ A0

o n“(4y) = 1 ny(47)
i=1

and € 1is defined by (5.1).
. It can be shown, see [19], that if the solution is sufficiently

smooth, then n, and n3 can be neglected with respect to ny and hence

‘ol '._-v_u;

we can use the indicator

749 = ng(ad)

Ll.l. A -

as in the case for p = 1. Nevertheless, we see a significant difference,
-, namely that in the case p =1 the principal part of the indicator is the
" "boundary line part" (jumps), while for p = 2 it is the "volume" part.

From the implementational point of view, the "volume" indicator is more

advantageous.

In the case of the smooth solution Uj and reasonable meshes the

PN AP Ao

indicators for p =1 and p = 2 are of the same magnitude and the

estimators are of the high quality, namely

affig ueng <

le = (1 + 8(e)),

I
5 where the term 6(e) is very small. Nevertheless, if the solution is
unsmooth as in our model problems, then the indicators are of very dif-

ferent magnitude when the elements are adjacent to the origin where the

Vol 3l Y e

solution is singular and the error is in these elements strongly under-
estimated. This is especially important in the case p = 2 because the
error indicators in the area where the solution is smooth are much smaller
than for p = 1. This makes the contribution of the largest indicators to

the error estimator much larger.

.
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The elements which are in the area of the singularity of the solution
are refined during the adaptive mesh construction and are located in the
terminal points of the tree data structu}e. These elements are quadruples
of the elements belonging to one "father". Fig. 5.2 shows in the left

corner such a quadruple and its "father" and "grandfather™.

Fig. 5.2. Scheme of the terminal element.

Hence, we will modify the error indicators in these terminal quadruples in
dependence on the distribution of the error indicators. (This modifica-
tion can be implemented in a very effective way.)

The modified estimators R are constructed from n as follows: the
four indicators of the quadruple of the elements are ordered by the
magnitude. For the sake of the explanation, assume that nZ(A?) 2 nz(Ag)

> n2(8)) > nP(a)) (see Fig. 5.1).

Ir n2(a]) > ?(al) with Y -8, then

n2(ad) = n2(a9)F(R)

) - n?ad),

S " A" 2" e% 2" s a" - ‘e g w Te Ty g ) y I TOCI
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and A
M
F(R) = 0.031605R + 1 for 0 ¢ R ¢ 234 <
N
3.762x10 3R Q
= 3.4813e3" for 234 < R < 1000 '¢
- 150 for R > 1000 :
~
L
:
nZ(A?) 0 0 - g,
with R ol where A} 1is the diagonal element to 4q. If n“(47) < Y
n (Au)
2(a) and n2(ad) > 8nP(A) with B = 100, then v
\s
3;
n2(ad) = G(Rp)n?(aD) :
- ‘2
n2(ad) = G(Ry)n%(8D) =
4
~ ‘(
n?(a) = n?(ad) -
-
22, .0 2,,0 -
n2(a) = n?(ad) :
where B
G(R) = 0.003499R + 1 for R < 700 -
R*10"3 k-
= 1.7132e for T00 ¢ R < 4000
= 93.54 for 4000 < R ;ﬁ
0]
and
n2(a%) n2(82) .
S R - 3 ;-
’ v,
n2 (%) 3 2 .
4 2 "$
&

[

(where as before in the denominator is the indicator of the diagonally

opposite element). If nZ(Ag) < an(Ag). then




A2 = n?(a)), i=1,2,3,4

The above formulae are characterizing the singularity of a point character

(F(R)) (e.g. of the type occurring in our model problems) or the line
singularity along the element side (G(R)). The formulae were developed by
analyzing theoretically and numerically these cases and their validity was

tested in a set of computations.




6. SOME BASIC PROPERTIES OF THE ESTIMATORS

— -

Let us mention the essential properties of the estimator. We list
the basic assumptions but not completely accurately because their com- ' )
plexity. We refer £o [6] and [19] to precise formulations.

a) The mesh is a K-mesh. Roughly speaking, the mesh is a K-mesh if
there are not too many irregular nodal points between the regular ones. \
b) The mesh is nearly equilibrated. This means that the error
indicators are nearly equal (except possibly small number of exceptions).

e) |e|E > Chp where h 1is the maximal element size. The

B, " YN v v e

conditions (a,b) usually lead to c.
d) The meshes are patchwise uniform. This roughly means that large

pieces of meshes have uniform character.

I R A

e) The mesh is such that (roughly speaking) the major part of the

error is in the areas where the solution has no singularity (due to proper

|'l"J

refinement) (usually b leads to this assumption).

Under the above assumptions, the following theorem holds (see [19]).

e g T ¥

Theorem 6.1. For any t >0 and h ¢ hy(t), 1 sufficiently small

e~y

le - 1| < Mt

where the constant M 1is independent of .

\

A

o

Theorem 6.1 is valid for p =1 and p = 2. Also for not modified "a
estimator. Nevertheless, Mt could be small only for very small h, {;
i.e. for very high accuracy which is not practically relevant. Hence the o
modified estimator is, as we will see, essential for practical computa- 3y
tion. :: N
;i
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7. NUMERICAL EXAMPLES e

We will illustrate the performance of the feedbéck finite element
method and the error estimator based on the error indicators introduced in
previous sections. Let us summarize typical behavior one can observe

1) Fig. 7.1 shows the values of the modified error indicators n2(A)
for Problem 1, biquadratic elements (p=2) and various neshes with M
elements and N degrees of freedom.

All indicators are of the same magnitude (1078) except the ones
adjoined to the singularity point which are of much larger magnitude
(1079).

The indicators of the elements which are not refined do not change
significantly by the refinement of other elements.

2) The maximal error indicator is decreased by the factor %- for
problem 1 (by 2 /2 for problem 2) when the element is refined by
dividing it into four elements. This factor is directly related to the
strength of the singularity (rz, r%) of the solution. (Note that this
factor is independent of p). For p = 2 and problem 1 the total error
€ 1s essentially the maximal error indicator until the indicator is of
the order 1077 which occurs when the smallest element is of order
2710, i.e. of the order 7%55 and the error |e|E is of the magnitude
1% of |u|E. Hence the rate is exponential. Fig. 7.2a, respectively
T7.2b, shows in the semilogarithmic resp. double logarithmical scale the
behavior of the error |e|E. Similar behavior can be observed in the case
of problem 2. See Fig. 7.3a,b. In Fig. 7.2b and 7.3b the slope of the
maximal asymptotic rate N'l/2 and N~' for the elements of degree
p=1 and p =2 1is shown. This rate is achieved for adaptively

constructed meshes for high accuracies independently of the strength of
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the singularity. We see that for p =1 this rate is achieved in the
range of engineering accuracy while for p = 2 the rate is in this range
still exponential and the asymptotic rate N'1 is achieved for much
higher accuracies.

3) When the indicator of the element adjoined to the origin will be
of order of the other indicators, then many elements will be refined. The
indicators nz(A) in the area where the solution is smooth will decrease
by the magnitude 26 = 64 for p=2 and 24 . 16 for p = 1. This
refinement is then followed by a series of refinement of the elements
adjoined to the singularity. Fig. 7.2 shows clearly this character for p
= 1. For p =2 the refinement of many elements did not occur in the
figure.

4) The refinement by the bisection procedure is not an optimal one
for the convergence. Nevertheless, it is very advantageous for the data
treatment. We refer to [20] for the analyses of the optimal refinement in
one dimension.

5) An effective feedback procedure has (especially for p = 2)
anticipated the character of the proper refinement so that the proper mesh
is designed quickly. It is obvious tha£ the refinement character can be
recognized. In the program FEARS this procedure is called a short pass

procedure.

6) The quality of the error estimator is high. Fig. 7.2 shows the
error and the error indicator for p = 2. In Table 7.1 we show typical data
for the meshes with 8-26 elements for Problem 1. We clearly see that the
effectivity index for the nomnmodified estimator is unacceptable although it

increases with |e|_ » 0 (and theoretically converges to 1). On the other

lg
hand, the modified estimator has effectivity index of high quality.

A A AR
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7) Comparing performance of the bilinear (p = 1) and biquadratic
mesh, we see that in the presence of a singularity the bilinear elements

perform better for low accuracy while higher accuracy cannot be

 gr- OF B g

practically achieved by bilinear elements. If the solution is smooth,

then the biquadratic elements perform better in larger range of the
accuracy (see also Fig. 7.3a,b). The performance of biquadratic elements
"could be improved if stronger refinement than based on bisection could be

effectively made.

M=8 N =40

2.18-8 | 8.2-8 | 2.23-8 1.26-8

3 S.71-8 301-4 | 266-5 | 4.62-8

M=14 N =60

109-8 | 492-8 | 4.80-8 | 1.03-7

2.09-;'4.!3-8 L1-8|7.11-9
‘ | 5.27-8 4.45-8
: 3.15-8(5.91-5|1.23-5 209-8}

Fig. 7.1a. Values of the modified error indicators n2(A) for M = 8,14,
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M =26

1.04-8 486-8 | 504-8

l.mﬁlz.m- 2.75-5]5.99—
488-8

B.45-8| 2.05-8'

1.42-8 1.34-8

LB.OT-QII.OS-BE.B&QII.??- 9

|.79-8 974-9

h5.18-9 1.53-5{3.15-6(5.28-9

DETAIL

Fig. T.1c. Values of the modified error indicators nZ(A) for M = 26.
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B 8. CONCLUSIONS

Y

We summarize now briefly our conclusions.

)

W a) The error indicators have different structures for even and odd

i

r

th degree of elements. The even degrees are preferable from the implemen-
tational aspects.

)

) b) The range of asymptotic exactness of the estimator has to be in-

<

. creased by the modification of the indicators in the terminal elements.

) The error estimates are then of high quality in the entire range of the

N accuracy.

5 ¢) Biquadratic elements lead often to an exponential convergence in
the entire range of engineering accuracy.

.j d) The feedback algorithm should be based on a properly designed

N "short passes™ which anticipate the pattern of the mesh refinement.
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- agencies and industries in the State of Maryland and the Washington

Metropolitan area.
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postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
. students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)
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